24.2: Self-Biased, High-Bandwidth, Low-Jitter 1-to-4096 Multiplier Clock Generator PLL

John G. Maneatis¹, Jaeha Kim¹, Iain McClatchie¹, Jay Maxey², Manjusha Shankaradas² True Circuits, Los Altos, CA¹ Texas Instruments, Dallas, TX²

Clock Generator PLLs for ASICs

Most ASICs PLLs for clock generation, but ...
Use different frequencies and multiplication

Optimal PLL Design

- For each F_{OUT} and N, one must adjust loop parameters for both minimum jitter and stability
- For clock generators (track input clocks) (ω_{REF} = 2π·F_{OUT}/N)
 - Loop bandwidth : $\omega_N \sim \omega_{REF}/20$
 - Damping factor : $\zeta \sim 1$
 - Third-order pole : $\omega_{\rm C} \sim \omega_{\rm REF}/2$
- Circuit parameters (e.g. I_{CH}, R) must vary with F_{OUT} and N!

Addressing Diverse Specifications

- Designing a different PLL for each ASIC
 - Easier to meet the specification, but ...
 - Verifying all designs is difficult and costly
- Our Goal: One PLL design for all ASICs
 - Only one design needs verification, but ...
 - Loop parameters must adjust automatically to satisfy wide range of F_{OUT} and N

Challenges

- Self-biased PLLs [Maneatis '96] adjust for F_{OUT}
 - Achieve fixed ω_N / ω_{REF} and ζ indep. of PVT
- But, Self-Biased PLLs do NOT adjust for N
 - ω_N / ω_{REF} and ζ vary with N (want fixed)
 - $\omega_{\rm C}/\omega_{\rm REF}$ varies with N (want fixed)
- This talk extends Self-Biased PLLs for wide ranges of N with a new loop filter network

Outline

- Introduction
- Review of Self-Biased PLLs
- Pattern Jitter Issues
- Loop Filter Architecture
- Implementation of Key Circuits
- Measured Results
- Conclusions

Second-Order PLLs

Self-Biased PLLs

 $R = 1/g_m \qquad I_{CH} = x \cdot I_D \qquad F_{VCO} = g_m/C_B$

Self-Biased PLLs

With Self-Biased PLLs

$$\omega_{\rm N}/\omega_{\rm REF} = \frac{1}{2\pi} \cdot \sqrt{\mathbf{x} \cdot \mathbf{N}} \cdot \sqrt{\mathbf{C}_{\rm B}/\mathbf{C}_{\rm 1}} \sim \sqrt{\mathbf{x} \cdot \mathbf{N}}$$
$$\zeta = \frac{1}{4} \cdot \sqrt{\mathbf{x}/\mathbf{N}} \cdot \sqrt{\mathbf{C}_{\rm 1}/\mathbf{C}_{\rm B}} \sim \sqrt{\mathbf{x}/\mathbf{N}}$$

• ω_N / ω_{REF} and ζ are constant with F_{OUT} ,

BUT not with N

Pattern Jitter / Spurious Noise

- Phase corrections every rising reference edge can cause disruptions to nearby output cycles
 - Periodic noise pattern repeats every ref. cycle or N output cycles

- Typical causes
 - Charge pump imbalances or leakage
 - Jitter in reference clock (aperiodic result)

Shunt Capacitor

 Use third-order pole to extend disturbance with reduced amplitude over many output cycles

- Problem with varying N using fixed capacitor
 - Extended number of cycles NOT function of N
 - Too few for large N \rightarrow Pattern jitter
 - Too many for small N \rightarrow Instability

Proposed Loop Filter

- Use switched capacitor filter network to
 - Output scaled amplitude error signal with N output cycle duration [Maxim '01]

 Want a simple solution using this approach that is compatible with Self-Biased PLLs

Original Filter Network

Only need to filter feed-forward path

Sampled Feed-Forward Network

- Sample phase error and generate proportional current that is held constant for N·T_{OUT}
- Sampled error is reset at end of ref. cycle

Need V_{RST} = V_{CTL} as zero bias level

Complete Filter Network

- Reset C₂ to V_{CTL} directly
 - Eliminates C₁ charge pump
- Equivalent feed-forward control gain

 $Q_0 \sim N \cdot Q_1$

Loop Dynamics

- With this new loop filter network we achieve $\omega_N / \omega_{REF} \sim \sqrt{x \cdot N} \qquad \zeta \sim (Q_O / Q_I) \cdot \sqrt{x/N} \sim \sqrt{x \cdot N}$
- Need to keep $\omega_{\rm N}/\omega_{\rm REF}$ and ζ constant with N
 - Just scale charge pump current with 1/N (=x)
- More detailed analysis will show

$$\omega_{\rm N}/\omega_{\rm REF} = \frac{1}{2\pi} \cdot \sqrt{C_{\rm B}/C_{\rm 1}}$$
$$\zeta = \frac{1}{4} \cdot \sqrt{C_{\rm B} \cdot C_{\rm 1}}/C_{\rm 2}$$

Both are independent of F_{OUT}, N, and PVT!

Complete Self-Biased CGPLL

Self-Biased Filter Network

Filter Network Reset Switches

Can switch to V_{CTL} independent of voltage level

Inverse-Linear Current Mirror

- Need to generate $I_{CH} = I_D / N$
- Use switches to adjust device size on input side
 - For N=1~4096, need 12 binary weighted legs
 - Need size range of 2048:1 \rightarrow Too much area!

Multi-Stage Linear CM

- Solution to size problem with LINEAR control
 - Use multiple device groups operating at different but ratioed current densities
 - Can have large ranges using small devices

Multi-Stage Inverse-Linear CM

- Just diode connect multi-stage linear current source and use as input side of current mirror
 - Can output gate bias of any device group
 - Stable as long as gain blocks reduce currents

Complete Current Mirror

Voltage-Controlled Oscillator

Buffer Tail Node Matching

Modified VCO

Static Supply Sensitivity

PLL Implementation

Process Technology Nominal Supply Voltage Total Occupied Area VCO Frequency Range Multiplication Factor Range Power Dissipation

- $0.13 \mu m$ N-well CMOS
- 1.5V (designed for 1.2V)

0.38 x 0.48mm²

- 30 ~ 650 MHz
- $N = 1 \sim 4096$

7mW @ 240 MHz, 1.5V

Measured Jitter vs N (240MHz)

Conclusions

- Proposed PLL achieves wide N and F_{OUT} range
- PLL is self-biased with constant loop dynamics $(\omega_N/\omega_{REF}, \zeta)$, independent of N, F_{OUT} , and PVT
- Sampled feed-forward network suppresses pattern jitter with effective ω_C that tracks ω_{REF}
- Achieves relatively constant period jitter of less than 1.7% as N is scaled from 1 to 4096